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Noise-induced chaos in an optically injected semiconductor laser model

S. K. Hwang, J. B. Gao, and J. M. Liu
Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095-159410

~Received 4 January 1999; revised manuscript received 30 August 1999!

The chaos induced by an intrinsic spontaneous-emission noise in an optically injected semiconductor laser is
investigated through a single-mode injection model. A method is developed to quantitatively study the scale-
dependent noise effect in general, and the noise-induced chaotic feature in particular. We find that noise at an
experimentally measured level can induce chaos in the system. This suggests that noise-induced chaos may
indeed exist in real systems. Certain required characteristics for noise to induce chaos are identified: the
periodic state itself, when subject to weak noise, should undergo a process that is much more diffusive than the
Brownian motion, and the adjacent chaotic states should still behave chaotically on certain finite scales when
subject to noise. We believe they are generic features for noise to induce chaos. The correlation dimension of
the clean and noisy attractors is also calculated to study noise-induced changes in the geometrical structure of
the attractors.

PACS number~s!: 42.60.Mi, 42.65.Sf, 42.55.Px
c
pr

a
cy
n
to
ou
at
i
d
ti

m
c

a
n
.
-
In

yp
ik
o
t
a
e
s

di
if
rs
te

lly
lik

re-

ain
it

with
to

ws
the

are
or-
oes

the

otic
be

ec.
the
he
lso
se-
thod
ore
le-

cha-
ise
tors

how
mil-
he
we

ex-
I. INTRODUCTION

Nonlinear dynamics in an optically injected semicondu
tor laser has recently attracted much attention due to its
found physics and potential applications. The occurrence
instabilities via a period-doubling route to chaos in such
system was numerically predicted by Sacheret al. @1#, and
later experimentally verified by Simpsonet al. @2#. The dy-
namics of the system has been experimentally mapped
function of the injection level and the detuning frequen
@3#, where two separate chaotic regions were identified. O
of the main elements in the dynamics of a semiconduc
laser is the intrinsic noise source in the form of spontane
emission. The effect of this noise source on the locked st
of an optically injected semiconductor were investigated
Refs.@4# and@5#. Recently, it was also quantitatively studie
how the intrinsic noise affects the oscillatory and chao
motions of the system@6#.

Noise can actually induce a variety of interesting pheno
ena in nonlinear dynamical systems, such as noise-indu
chaos@7–10#, noise-induced instabilities@11,12#, and noise-
induced order@13#. Noise-induced chaos was first found in
forced anharmonic oscillator@7# and later demonstrated i
the noisy Logistic map@8# by Crutchfield and co-workers
They suggested@7,8# that periodic states with a high period
icity become unobservable under the influence of noise.
stead, they become bandlike, with the number of bands t
cally much smaller than their periods. It is these bandl
noisy oscillatory states that are called noise-induced cha
states. Since a period-doubling cascade is a universal fea
of nonlinear dynamical systems, one would expect that ch
associated with this cascade should be readily observed
perimentally. To convincingly identify deterministic chao
experimentally, one need to be able to unambiguously
tinguish between noise and chaos. This is, however, a d
cult issue@14–17#. For example, Osborne and co-worke
observed that 1/f a noise generates time series with fini
correlation dimensions@14# and convergingK2 entropy esti-
mates@15#. This indicates that one need to more carefu
study whether the dynamics of a noise-induced chaos
PRE 611063-651X/2000/61~5!/5162~9!/$15.00
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attractor is mostly deterministic or mostly stochastic. By
examining the noisy logistic map@10#, we have indeed found
that noise-induced chaos does not happen with the m
period~2!-doubling cascade in the logistic map. Rather,
occurs at the period-doubling cascades associated
period-3 and period-5 windows. Three features for noise
induce chaos have also been identified.

Since an optically injected semiconductor laser follo
the same period-doubling route to chaos as those of
forced anharmonic oscillator and the logistic map, we
inspired to ask whether noise can make transitions from
der to chaos in such a system. If noise-induced chaos d
occur, are the mechanisms involved similar to those for
noisy logistic map in our previous study@10#? To better
study the effect of the noise and the noise-induced cha
feature, a more quantitative and effective approach will
developed.

The remainder of this paper is outlined as follows. In S
II, we describe the coupled equations that characterize
dynamics of an optically injected semiconductor laser. T
range of the operating conditions under this study is a
presented. In Sec. III, we first consider the test for noi
induced chaos. The time-dependent exponent curve me
is then reviewed as the basis in developing a method. A m
convenient method is next introduced to study the sca
dependent noise effect in general, and the noise-induced
otic feature in particular. In Sec. IV, the mechanism for no
to induce chaos is studied. The phase diagrams of attrac
and the optical spectra are presented in Sec. V to show
the quantitative results obtained reflects on these more fa
iar tools. In Sec. VI, we investigate the effect of noise on t
geometrical structure of the nonlinear dynamics. Finally,
conclude in Sec. VII.

II. COUPLED EQUATION MODEL

A single-mode model of a semiconductor laser under
ternal optical injection is considered@2#:
5162 ©2000 The American Physical Society
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da

dt
5

1

2 Fgcgn

gsJ̃
ñ2gp~2a1a2!G

3~11a!1jgc cos~Vt1f!1mFa , ~1!

df

dt
52

b

2 Fgcgn

gsJ̃
ñ2gp~2a1a2!G

2
jgc

11a
sin~Vt1f!1

mFf

11a
, ~2!

dñ

dt
52gsñ2gn~11a!2ñ2gsJ̃~2a1a2!

1
gsgp

gc
J̃~2a1a2!~11a!2. ~3!

Herea5(uAu/uA0u21), whereA is the field amplitude of the
injected laser, andA0 is the steady-state field amplitude
the laser in the free-running condition.f is the phase differ-
ence betweenA and Ai , whereAi is the amplitude of the
injection field.ñ5(N/N021), whereN is the carrier density
of the injected laser andN0 is the steady-state carrier densi
of the laser in the free-running condition.gc , gs , gn , and
gp are the cavity decay rate, the spontaneous carrier re
ation rate, the differential carrier relaxation rate, and the n
linear carrier relaxation rate, respectively@18#. J̃5(J/ed
2gsN0)/gsN0 is the normalized, dimensionless injectio
current parameter, whereJ is the injection current density,e
is the electronic charge, andd is the active layer thickness o
the laser. The dimensionless injection parameterj
5huAi u/(gcuA0u) is the normalized strength of the injectio
field received by the injected laser, whereh is the coupling
rate of the injection field to the injected laser.V5v i2v0 is
the frequency detuning of the injection field from the fre
running frequency of the injected laser.b is the linewidth
enhancement factor.Fa andFf are the normalized Langevi
noise-source parameters that characterize the spontan
emission in the laser:

^Fa~ t !Fa~ t8!&5^Ff~ t !Ff~ t8!&5
Rsp

2uA0u2
d~ t2t8!

5
bgc

2G J̃
d~ t2t8!,

^Fa~ t !Ff~ t8!&5^Ff~ t !Fa~ t8!&50,

where Rsp and b are the rate@19# and the fraction of the
spontaneous emission into the laser mode, respectively,
G is the confinement factor of the laser waveguide. Since
strength of noise can differ by orders of magnitude in diff
ent semiconductor lasers, to infer how different noise lev
affect the laser dynamics, a coefficientm is introduced before
Fa and Ff . Hencem50 corresponds to an idealized, b
unrealistic, clean system in the absence of any noise, w
m51 corresponds to the experimentally determined no
level @19# for the laser under consideration.
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The laser considered in this investigation is a SDL mo
5301-G1 laser diode which is an index-guide
GaAs/AlxGa12xAs quantum-well laser with a 500-mm cav-
ity. The current injection level is fixed atJ̃52/3, which cor-
responds to an injection current level of 40 mA and a fre
running output power of 9 mW. At this current level, th
corresponding laser parameters aregc52.431011s21, gs
51.4583109 s21, gn51.343109 s21, gp52.413109 s21,
andb54. Meanwhile, the relaxation resonance frequency
this laser in the free-running condition isf r52.93 GHz. All
of these parameters were determined experimentally@18#.
The experimentally measured spontaneous emission rate@19#
at the operating condition considered here isRsp54.7
31018V2 m22 s21.

At a given current injection level, the characteristics of
optically injected semiconductor laser depend on the de
ing frequencyf 5V/2p and the injection parameterj of the
injection field. In the present study, the injection paramete
fixed at j50.04, and the detuning frequency is tuned b
tween 1.5 and 3.5 GHz. Figure 1~a! depicts the numerically
obtained bifurcation diagram form50, from which a period-
doubling route to chaos is observed. It is found that chao
states exist in the range extending from belowf 51.68 GHz
to above f 53.03 GHz. However, there exist periodic win
dows within this chaotic region, such as those around
detuning frequencies at 1.70, 2.24, and 2.83 GHz. As a c
parison, Fig. 1~b! shows the bifurcation diagram form51. It
is observed that the period-doubling cascade is smeared

FIG. 1. Numerically obtained bifurcation diagram of the e
trema of the normalized optical field amplitudea(t) vs the detuning
frequency with~a! m50 and~b! m51. The injection parameterj is
0.04.
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by noise. Note that even the periodic states with low peri
icity, such as that at the detuning frequencyf 51.5 GHz,
which is a period-2 oscillation, become unobservable un
the influence of noise if one were to estimate the periodic
solely on the bifurcation diagram. The question for us is th
whether these apparently aperiodic motions are mostly c
otic, and the period-doubling cascade is mostly inhibit
That is, when noise is present, whether the periodic st
still exhibit periodlike motion, similar to that when noise
absent, with some diffusion due to noise, or their dynam
characteristics have completely changed to be more
chaos.

To answer the above question, we choose some of
periodic states at the detuning frequenciesf 51.67 and 3.04
GHz associated with the main period-doubling cascade,
f 51.70, 2.24, and 2.83 GHz in the periodic windows,
shown in Fig. 1, for the following discussions. In addition,
explore how the periodic states and their adjacent cha
states are related when both are subject to noise, corresp
ing adjacent chaotic states atf 51.68, 1.71, 2.25, 2.84, an
3.03 GHz are also investigated. Note that the chaotic st
under present study belongs to one of the two experimen
mapped chaotic regions@3#, which is different from the one
studied in Ref.@6#.

III. TEST FOR NOISE-INDUCED CHAOS

To determine whether noise can induce chaos or not,
need to define chaos carefully. From the mathematical p
of view, a noisy system, no matter how weak the noise
has infinite dimensions. From the experimental point
view, one would, however, be more interested in a cert
range of finite scales: if the noise is very weak, then
influence on the dynamics may be limited to very sm
scales, leaving the dynamics on some finite scales deter
isticlike. In the present discussion, this experimental poin
view is adopted, and chaos is defined by the exponen
divergence between nearby trajectories on certain fi
scales. Carefully note the concept of scale in this definit
of chaos, since the conventional one based on simply ca
lating the positive Lyapunov exponent does not take t
concept into consideration. Noise-induced chaos is also
fined in a similar manner: a certain amount of noise indu
exponential divergence between nearby trajectories on
tain finite scales in a dynamical system. Since exponen
divergence between nearby trajectories is involved, a tes
noise-induced chaos has to be able to estimate the la
positive Lyapunov exponent. A suitable test for nois
induced chaos from the proposed algorithms for estima
the positive Lyapunov exponents may be found. These a
rithms can be roughly grouped into three types: the w
known algorithm of Wolfet al. @20# for estimating the larg-
est positive Lyapunov exponent, a complexity meas
proposed by Paladin and co-workers@21,22#, which is a
weighted version of the largest positive Lyapunov expone
and a direct dynamical test for deterministic chaos propo
by Gao and Zheng@23#. Before we continue, we need t
carefully examine which algorithm can serve as a basis
the study of noise-induced chaos.

To serve as a test for noise-induced chaos, a set of m
mal criteria has to be satisfied. The first criterion requi
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that different researchers should interpret the obtained res
consistently when they apply the test to the same probl
This can be ensured if there is no free parameters to selec
there is a simple, strict procedure for choosing the para
eters when using the algorithm. The second criterion, wh
is as important as the first, is that it will not mislead us
interpret a simple noisy process, such as white noise o
linear Gaussian process, as chaos. These two criteria en
the notion of determinism in some degree. We will show
the following subsection that among the three algorith
mentioned in the last paragraph, only the method propo
by Gao and Zheng@23# satisfies these two criteria. The te
of Gao and Zheng@23# has an additional appealing featu
that it has incorporated the notion of scale into the algorith
Hence it can be used as the basis for the present study w
out any modification. In Sec. III A we shall first review th
method. Meanwhile, we shall point out why the other tw
algorithms fail to satisfy the above two criteria. We sh
then develop a simplified version of Gao and Zhen
method, which will be particularly useful for studying th
scale-dependent noise effect with the noise strength fixe

In order for the analysis presented in this paper to
directly relevant to experimental data analysis, we shall w
with scalar time series in the following discussions. Given
scalar time seriesx( i ), i 51,2, . . . , it is nowcustomary to
form vectors Xi5@x( i ),x( i 1L), . . . ,x„i 1(m21)L…# by
employing the time delay embedding method@24–26#,
whereL is the delay time andm the embedding dimension
For the analysis of purely chaotic signals,m andL have to be
chosen properly. A basic idea to determine the minim
acceptable embedding dimension is that in the passage
dimensionm to m11 one can differentiate between poin
on the orbitX(n) that are true neighbors and points whic
are false neighbors, points which appear to be neighbors
cause the orbit is being viewed in too small an embedd
space. Based on this basic idea, several methods have
proposed@23,27–30#, which differ in implementations eithe
by way of graphic display or by defining some appropria
statistical quantity. Here, we adopt the method proposed
Gao and Zheng@23#. Based on the characteristic of the sy
tem, we choosem to be 7 andL to be 5. Since noisy data ar
infinite dimensional, mathematically speaking, optimal e
bedding is not defined for the analysis of noisy data. W
have found, though, that optimal embedding parameters f
clean chaotic signal are usually also good for the analysi
the corresponding noisy chaotic signal.

A. Time-dependent exponentL„k… curve

It has been demonstrated@23# that the time series of a
nonlinear dynamical system can be conveniently studied
computing the following time-dependent exponentL(k)
curves:

L~k!5 K lnS iXi 1k2Xj 1ki
iXi2Xj i

D L , ~4!

with r<iXi2Xj i<r 1Dr , where r and Dr are prescribed
small distances. Geometrically (r ,r 1Dr ) defines a shell,
and a shell captures the notion of scale. The angle brac
denote ensemble averages of all possible pairs of (Xi ,Xj ).
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The integerk corresponds to the evolution timekdt, and is
called the evolution time for simplicity.

For clean chaotic systems, aL(k) curve typically in-
creases linearly withk until somekp , then flattens, wherekp
is the predictable time scale for chaos. The linearly incre
ing parts of theL(k) curves corresponding to different she
overlap together to form an envelope. The slope of this
velope estimates the largest positive Lyapunov expon
This property provides a direct dynamical test for determ
istic chaos@23#. Figure 2~a! shows an example of theL(k)
curves for the chaotic state atf 52.84 GHz, with m50,
where six curves, from bottom to top, correspond to sh
(22( i 11)/2,22 i /2) with i 56, 7, 8, 9, 10, and 11. As for clea
periodic systems,L(k) is simply zero for allk and for all
shells, indicating that the largest exponent is zero. This
consistent with a theoretical result of Haken’s@31#.

For noisy systems, theL(k) curves corresponding to dif
ferent shells increase withk and then level off. However, the
linearly increasing parts of theL(k) curves may separat
from one another. The stronger the noise is, the more
separation is. An example for the chaotic state atf
52.84 GHz withm51 is shown in Fig. 2~b!. Note that the
linearly increasing parts of theL(k) curves for some shells
still overlap together, which, according to the definition
chaos, implies that this chaotic state still behaves chaotic
at these scales under the influence of noise. For many o
chaotic states, such as that atf 51.68 GHz, however, we find
that the linearly increasing parts of theL(k) curves for all

FIG. 2. Time-dependent exponentL(k) curves as a function o
the evolution timek for f 52.84 GHz with ~a! m50 and ~b! m
51. In both plots, six curves, from bottom to top, correspond
shells (22( i 11)/2,22 i /2) with i 56, 7, 8, 9, 10, and 11.
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shells separate from one another. This simply suggests
the noisy chaotic motions corresponding to those parame
are more stochastic than deterministic. We have also
served that many noisy oscillatory motions behave simila
as the noisy chaotic motion atf 52.84 GHz.

We can now discuss why in the presence of noise
algorithms of Wolfet al. @20# and Paladin and co-worker
@21,22# cannot be used as a test for chaos. Their methods
somewhat equivalent to estimating the Lyapunov expon
~or a complexity measure! by L(k)/k, whereL(k) is defined
as in Eq. ~4! but with a modification: it is computed fo
iXi2Xj i,r and iXi 1k2Xj 1ki,R, wherer andR are pre-
scribed distance scales. The conditioniXi2Xj i,r amounts
to grouping some of our small shells together to form a sm
ball. The conditioniXi 1k2Xj 1ki,R is presumably to se
the time scalek smaller than the prediction time scalekp .
For clean chaotic signals, if the embedding parameters
properly chosen, and the linearly increasing parts of
L(k) curves form a tight envelope, then an estimation of
exponent will not depend on the specific choice ofr andR.
However, one is usually not so lucky as to choose th
specific optimal embedding parameters. Hence different
searchers may obtain different estimates of the exponen
choosing different sets of values forr andR. For example, an
inexperienced researcher might unfortunately setk so much
larger thankp that a value of almost zero is obtained for th
exponent.

The problem associated with estimating an exponent fr
a set of stochastic data by using the algorithms of Wolfet al.
@20# and Paladin and co-workers@21,22# is apparently much
more serious than that associated with estimating an ex
nent from a clean chaotic signal. Since now theL(k) curves
do not form an envelope, different researchers typically w
obtain different values for the exponent by choosing diff
ent sets of values forr and R ~and embedding parameters!.
One may instinctly choosek@(m21)L such that the esti-
mated exponent may quite often be very close to zero. F
stochastic data set, since theL(k) curves always increase fo
k,(m21)L due to the correlations introduced by the em
bedding procedure@23#, a positive finite value of the expo
nent can always be obtained for a stochastic data, thus re
ing in a false interpretation of the stochastic data be
chaotic. Indeed, Dammig and Mitschke@17# found that a
finite positive value for the largest positive Lyapunov exp
nent is obtained from some stochastic data by the algori
of Wolf et al. @20#. The method of Gao and Zheng@23#
avoids all these problems because all the important infor
tion, such as whether the envelope exists or not, is autom
cally shown by theL(k) curves.

The authors of Ref.@8# suggested that the effect of nois
is to average the structure of deterministic attractors o
some range of nearby parameters, implying that the beha
of adjacent noisy attractors are similar. Therefore, for no
to be able to induce a transition from a periodic state t
chaotic state, the corresponding adjacent chaotic st
should still behave chaotically in the presence of such no
In other words, the adjacent chaotic states should be v
insensitive to noise. This suggests that we first study
immunity of chaotic states to noise. Before we proceed,
need to point out that a specific noise source may af
different chaotic states differently: it may have an effect
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the motion of a certain chaotic state only at very sm
scales, but may affect the motion of other chaotic state
large scales. We call this feature the scale-dependent n
effect. The idea of using a quantity called the normaliz
area@32# to quantify the effect of noise is not very conv
nient for studying the scale-dependent noise effect, beca
the normalized area is calculated based on a specific s
defined by two shells which are somewhat arbitrarily chos
Therefore, we need to develop a method to quantify sc
dependent noise effect for the comparison of different c
otic states.

B. Scale-dependent Lyapunov exponent

Recall that for clean chaotic systems, the linearly incre
ing parts of theL(k) curves corresponding to different she
overlap together to form a linear envelope, and the slope
this envelope estimates the largest positive Lyapunov ex
nent for the dynamical system. Hence the slope of the
early increasing part of theL(k) curve for each shell should
be independent of scales~shells! if the envelope is very well
defined. We call the slope of the linearly increasing part
the L(k) curve for each shell the largest positive Lyapun
exponent at that scale, and denote it asl(r ) for the shell
(r ,r 1Dr ), or shell r for simplicity. It is this characteristic
that guarantees different researchers to obtain compar
estimates of the largest positive Lyapunov exponent fo
dynamical system though each may estimate this value
different scale. For noisy chaotic systems, the envelope
longer exists, andl(r ) generally depends onr. Therefore,
the largest positive Lyapunov exponent for noisy chao
systems is not defined. The extent of the dependence ofl(r )
on r will, however, tell us how noise affects different scal
for different systems. The less dependent onr the l(r ) is,
the more immune the system is to noise.

Figure 3 shows the value ofl(r ) for the chaotic states a
f 51.68 and 2.84 GHz as a function of logr for both m50
andm51. It is observed thatl(r ) has a larger value whe
noise is present than when noise is absent, indicating
noise increases the degree of exponential divergence
tween nearby orbits of the chaotic state. It is also obser
that the amount of change in the value ofl(r ) caused by
noise at f 52.84 GHz is much smaller than that atf
51.68 GHz. This indicates that the effect of noise on
dynamics atf 52.84 GHz is much less significant than that
f 51.68 GHz.

To be more quantitative, we first denotel(r ) of the cha-
otic state in the presence of noise (m51) asln(r ) and that
in the absence of noise (m50) aslc(r ), and then take their
ratio. If the chaotic state is insensitive to noise, then the r
ln(r )/lc(r ) should be around 1. Figure 4 shows the ra
ln(r )/lc(r ) versus log10 r for f 51.68, 1.71, 2.25, 2.84, an
3.03 GHz. They correspond to the chaotic states adjace
the periodic states atf 51.67, 1.70, 2.24, 2.83, and 3.0
GHz, respectively. Note that the values of the ra
ln(r )/lc(r ) for f 51.68 and 1.71 GHz decrease with i
creasing values of log10 r significantly, whereas those forf
52.25, 2.84, and 3.03 GHz only depend weakly on log10 r .
This indicates that the chaotic states atf 52.25, 2.84, and
3.03 GHz are substantially less sensitive to noise than th
at f 51.68 and 1.71 GHz. In other words, when noise
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present, the motions of the chaotic states atf 52.25, 2.84,
and 3.03 GHz may still be chaotic on some finite scal
while those atf 51.68 and 1.71 GHz simply become nois
like.

Since the corresponding adjacent chaotic states shoul
insensitive to noise for periodic states to be susceptible
noise-induced chaos, it is expected from Fig. 4 that no
induced chaos is very likely to happen around the perio
states atf 52.24, 2.83, and 3.04 GHz, while it is very un
likely to occur around those atf 51.67 and 1.70 GHz. To
determine whether noise indeed induces chaos at those
pected periodic states, we can simply apply the method

FIG. 3. Slope of the linearly increasing parts of theL(k) curve,
l(r ), vs the logarithm of the radius of each shell, log10 r , for f
51.68 and 2.84 GHz for the cases ofm50 and 1 in both plots.

FIG. 4. Ratio ofln /lc vs log10 r for f 51.68, 1.71, 2.25, 2.84,
and 3.03 GHz.
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developed to study the dependence ofl(r ) on r for the pe-
riodic states when subject to noise. To study the change
l(r ) caused by the presence of noise for a periodic state,
instructive to compare its noisy motion with the clean moti
of its adjacent chaotic state because adjacent dynam
states are suggested@8# to behave similarly when subject t
noise. Therefore, we first calculatel(r ) for the periodic state
in the presence of noise, denote it aslp(r ), and calculate
l(r ) for its adjacent chaotic state in the absence of no
denote it aslc(r ). We then take their ratio. The rati
lp(r )/lc(r ) is expected to be around 1 if noise-induc
chaos happens. Figure 5 shows the ratiolp(r )/lc(r ) as a
function of log10 r for the periodic states atf 51.67, 1.70,
2.83, 2.24, and 3.04 GHz. It can be concluded from Fig
that noise-induced chaos does occur atf 52.24, 2.83, and
3.04 GHz, but it does not occur atf 51.67 and 1.70 GHz.
Moreover, if we compare Fig. 5 with Fig. 4 carefully, w
find that the periodic state and its adjacent chaotic state
behave similarly when both are subject to noise, as sugge
in Ref. @8#.

IV. MECHANISM FOR NOISE-INDUCED CHAOS

To find the mechanism for noise-induced chaos, we n
to work with the so-called logarithmic displacement curv
and examine the long-term growth rate of these curves w
subject to weak noise. The logarithmic displacement cur
are defined by rewriting Eq.~4! as @32#

^ lniXi 1k2Xj 1ki&5^ lniXi2Xj i&1L~k!, ~5!

and plot^ lniXi1k2Xj1ki& as a function of the evolution time
k.

It has been demonstrated@32# that for noisy oscillatory
systems, such as the noisy Van der Pol’s oscillator, the ph
points in the embedding space execute Brownian-like mo
near a deterministic limit cycle, i.e., for largek, ^ lniXi1k
2Xj1ki&;ln ka, with a50.5. It hasalso been shown that th
long-term growth rate of the logarithmic displacement curv
slows down near a bifurcation point in an optically inject
semiconductor laser@6#, which is characterized by an expo
nenta,0.5. This implies a diffusional process slower th
the standard Brownian motion. More interestingly, it h

FIG. 5. Ratio oflp /lc vs log10 r for f 51.67, 1.70, 2.24, 2.83
and 3.04 GHz.
in
is

al

e,

5

o
ted

d
,
n
s

se
n

s

been shown in the noisy logistic map@10# that, for noise of a
certain strength to induce chaos from a periodic state,
long-term growth rate of the logarithmic displacement curv
for this periodic state when subject to noise of a wea
strength is stronger than the standard Brownian motion, c
acterized by an exponenta.0.5.

With the above results in mind, we study the behavior
the logarithmic displacement curves for the periodic sta
subject to noise of a weak strength (m,1). These are shown
in Fig. 6 for ~a! f 51.67 GHz with m50.0071/2, ~b! f
51.70 GHz with m50.0031/2, ~c! f 52.24 GHz with m
50.000 009 31/2, ~d! f 52.83 GHz with m50.00071/2, and
~e! f 53.04 GHz with m50.00071/2. To aid the visibility,
these groups of curves are shifted upward by differ
amounts. To show the growth rate of the logarithmic d
placement curves, curves generated from lnka with a50.4,
0.35, 0.85, 1.1, and 0.9 forf 51.67, 1.70, 2.24, 2.83, an
3.04 GHz, respectively, are also depicted. Diffusional p
cesses that are slower than the standard Brownian motion
observed atf 51.67 and 1.70 GHz, where a transition fro
periodic states to chaos does not occur. The growth rate
the logarithmic displacement curves forf 52.24, 2.83, and
3.04 GHz are larger than 0.5, indicating diffusional proces
stronger than the standard Brownian motion.

Note that when noise-induced chaos occurs, the noisy
tem with certain amount of noise exhibits an exponen
growth in the displacement curves for a short period of tim
then levels off. Such behavior is easier to observe if
noisy system with a weaker noise already executes a d
sional process stronger than the Brownian motion. This is
reason why noise is able to induce chaos atf 52.24, 2.83,
and 3.04 GHz, but is not capable of doing so atf 51.67 and
1.70 GHz, for the diffusional processes of the latter a

FIG. 6. Four logarithmic displacement^ lniXi1k2Xj1ki& curves,
from top to bottom, corresponding to shells (22( i 11)/2,22 i /2) with
i 59, 10, 11, and 12 for~a! f 51.67 GHz andm50.0071/2, ~b! f
51.70 GHz and m50.0031/2, ~c! f 52.24 GHz and m
50.000 009 31/2, ~d! f 52.83 GHz andm50.00071/2, and ~e! f
53.04 GHz andm50.00071/2. Curves generated from lnka with
a50.4, 0.35, 0.85, 1.1, and 0.9 are also depicted in~a! as blank
squares,~b! diamonds,~c! triangles,~d! circles, and~e! squares,
respectively. To aid the visibility, groups of curves~a!, ~b!, ~c! and
~d! are shifted upward by 10.5, 7.5, 6.0, and 3 units, respective
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slower than the standard Brownian motion. Note that t
very condition is also involved in the periodic states susc
tible to noise-induced chaos in the noisy logistic map@10#.
We surmise that this is a generic mechanism for noise
induce chaos, and thus has predictive value.

V. PHASE DIAGRAM AND OPTICAL SPECTRUM

Let us now look at the dynamics of our clean and no
systems with the more familiar tools: phase diagrams
optical spectra. To be simple, only a few of the dynami
states will be discussed. However, the results presented a
to other corresponding cases.

Figure 7 shows the optical spectra of the system in diff
ent operating conditions. The optical spectrum is an imp
tant and common tool in laser physics and engineering
cause it exhibits all frequency components of an optical fie
which thus reflects certain aspects of the dynamics of
system. It is found that when noise is absent, the opt
spectra atf 51.67 and 2.83 GHz consist of discrete, re
tively narrow peaks that are regularly spaced, which are
signature of periodic oscillation for this system@2,3#. In
comparison, the spectrum atf 52.84 GHz is dominated by a
broad pedestal with some strong secondary peaks, reve
the chaotic characteristic of the system@2,3#. These observa
tions also reflect on the structure of corresponding attrac
shown in Fig. 8.

Also shown in Fig. 7 is the spectrum of the system subj
to noise. For the periodic state atf 51.67 GHz, although the

FIG. 7. Optical spectra forf 51.67, 2.83, and 2.84 GHz for th
cases ofm50 and 1.
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spectrum shows some broadening around each principal
quency, many of the principal frequencies still remain
peaks. This suggests that the system still oscillates peri
cally but the periodic motion is obscured by noise to a c
tain degree. In contrast, for the periodic state atf
52.83 GHz, the spectrum is dominated by broad pedes
and only a few of the principal frequencies remain as pea
indicating the loss of the periodic characteristic. This obs
vation is consistent with our earlier conclusion that no
induces chaos atf 52.83 GHz but not atf 51.67 GHz. Note,
however, that the difference between these two noisy st
is difficult to distinguish by solely observing the correspon
ing attractors in Fig. 8.

For the chaotic state atf 52.84 GHz, we find that the
spectrum preserves most of features with and without no
This suggests that the chaotic state atf 52.84 GHz still be-
haves chaotically when noise is present. The same result
also be observed from Fig. 8, where the chaotic attrac
subject to noise is only blurred in small scales but is p
served in large scales. On the other hand, we find that un
the influence of noise, the spectrum and attractor for
chaotic state atf 51.68 GHz become completely differen
indicating a noiselike characteristic of the dynamics. The
observations are consistent with the quantitative result
tained earlier and shown in Fig. 4, that the effect of noise

FIG. 8. Projections of three-dimensional attractors on two
mensions forf 51.67, 2.83, and 2.84 GHz for the cases ofm50
and 1.
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the chaotic dynamics atf 51.68 GHz is substantially stron
ger than that atf 52.84 GHz. It is also found that when nois
is present, the spectra forf 52.83 and 2.84 GHz are ver
similar to each other. This is in agreement with the ear
observation that a periodic state and its adjacent chaotic
behave similarly. This is also reflected in the similarity of t
noisy attractors betweenf 52.83 and 2.84 GHz, as shown i
Fig. 8. These observations in geometrical structure of att
tors, shown in Fig. 8, suggest that we calculate the corr
tion dimensions@33,34# of the chaotic states and the nois
induced chaotic states.

VI. CORRELATION DIMENSION OF NOISE-INDUCED
CHAOTIC STATES

The correlation integralC(N,r ) of a dynamical state is
defined as@33#

C~N,r !5
1

N2 (
i , j 51

N

u~r 2iXi2Xj i !, ~6!

where u is the Heaviside step function,Xi and Xj are the
vectors constructed from the time series,N is the number of
points in the time series, andr is a prescribed small distance
The correlation dimension of the dynamical state is th
given by

n5 lim
r→0

lim
N→`

log10C~N,r !

log10 r
. ~7!

Here we measure the local slope of the correlation inte
log10C(N,r ) instead for different values of the small di
tancer by calculating

n~r i !5
log10C~N,r i 21!2 log10C~N,r i 11!

log10 r i 212 log10 r i 11
. ~8!

Figure 9 shows the values of the local slope of the co
lation integral log10C(N,r ) as a function of log10r for f
51.68 and 2.84 GHz, respectively. Forf 51.68 GHz, we
find that the curves of the local slope form50 andm51 are
separated at all scales, indicating that noise completely
stroys the original structure of the clean attractor. In contr
it is found that forf 52.84 GHz, the local slopes of the co
relation integral withm50 and 1 overlap at some larg
scales but separate at small scales. This indicates that s
fine structures of the attractor are destroyed by noise, bu
entire noisy attractor is left chaoslike with the general ch
acteristics of the clean chaotic attractor. Note that no
induced chaos occurs atf 52.84 GHz, not atf 51.68 GHz.
These results indicate that, in the presence of noise, a ch
state adjacent to a periodic state where noise-induced c
happens preserves approximately the same geometrical s
ture, whereas that adjacent to a periodic state where no
induced chaos is not observed exhibits a completely diffe
geometrical structure. This alternatively tells us that no
does have much less effect on the dynamics of a chaotic
adjacent to a periodic state where noise-induced chaos
pens.

Also shown in Fig. 9 are the values of the local slope
the correlation integral log10C(N,r ) for the periodic states a
r
te
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f 51.67 and 2.83 GHz, withm51. We observe that in the
presence of noise, the curves of the local slope forf 51.67
and 2.83 GHz behave approximately the same way as th
for their corresponding adjacent chaotic states atf 51.68 and
2.84 GHz. This tells us that when subject to noise, a perio
state and its adjacent chaotic state have similar geomet
structures. Moreover, it indicates that a noise-induced c
otic state does share a similar geometrical structure as
adjacent chaotic state in the presence of noise.

VII. CONCLUSION

The effect of the intrinsic spontaneous-emission noise
the nonlinear dynamics of an optically injected semicond
tor laser is investigated to find whether noise with an exp
mentally determined level can induce chaos in such a s
tem. To study the observed noise effects, we develo
method by studying the dependence of the largest pos
Lyapunov exponent on scales for noisy systems. T
method is shown to provide a quantitative and effective
proach to the study of the scale-dependent noise effect
the characteristics of noise-induced chaos. By employing
method, we find that a chaotic state adjacent to a perio
state where noise-induced chaos is expected to happe
insensitive to noise, leaving the chaotic state still chaos
in the presence of noise. Most importantly, we find th
noise-induced chaos does occur at the periodic states a

FIG. 9. Local slope of the correlation integral log10 C(N,r ) vs
log10 r for f 51.68 and 2.84 GHz for the cases ofm50 and 1. Also
shown aref 51.67 and 2.83 GHz form51.
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pected. Because the laser model used here was shown@2,3#
to successfully recover all the oscillatory and chaotic sta
of the system observed experimentally, this result imp
that noise with an experimentally determined strength d
induce chaos in the system under certain operating co
tions, suggesting that noise-induced chaos indeed exis
real systems. The key reason for noise to induce chaos is
the periodic state should execute a diffusional process st
ger than the standard Brownian motion when subject to n
of a weak strength. It is this condition that allows nois
when its strength is increased, to easily induce exponen
divergence between nearby orbits, which is a character
of deterministic chaos. Note that this characteristic of
periodic state together with the characteristic that its adjac
chaotic state is insensitive to noise are also involved in
noisy logistic map@10# for noise-induced chaos to happe
This implies that these two characteristics are generic
tures for noise to induce chaos.
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To study the effect of noise on the geometrical struct
of the dynamical states, the correlation dimensions of
attractors are calculated. It is found from this study th
when subject to noise, a chaotic state adjacent to a peri
state where noise-induced chaos happens preserves mo
its original geometrical structure in large scales, whereas
geometrical structure of a chaotic state adjacent to a peri
state where noise-induced chaos is not observed is c
pletely changed in the presence of noise. Moreover, we
find that a noise-induced chaotic state shares a similar g
metrical structure with its adjacent chaotic state in the pr
ence of noise.
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