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Noise-induced chaos in an optically injected semiconductor laser model
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The chaos induced by an intrinsic spontaneous-emission noise in an optically injected semiconductor laser is
investigated through a single-mode injection model. A method is developed to quantitatively study the scale-
dependent noise effect in general, and the noise-induced chaotic feature in particular. We find that noise at an
experimentally measured level can induce chaos in the system. This suggests that noise-induced chaos may
indeed exist in real systems. Certain required characteristics for noise to induce chaos are identified: the
periodic state itself, when subject to weak noise, should undergo a process that is much more diffusive than the
Brownian motion, and the adjacent chaotic states should still behave chaotically on certain finite scales when
subject to noise. We believe they are generic features for noise to induce chaos. The correlation dimension of
the clean and noisy attractors is also calculated to study noise-induced changes in the geometrical structure of
the attractors.

PACS numbeis): 42.60.Mi, 42.65.Sf, 42.55.Px

[. INTRODUCTION attractor is mostly deterministic or mostly stochastic. By re-
examining the noisy logistic md@.0], we have indeed found
Nonlinear dynamics in an optically injected semiconduc-that noise-induced chaos does not happen with the main
tor laser has recently attracted much attention due to its prgeeriod2)-doubling cascade in the logistic map. Rather, it
found physics and potential applications. The occurrence ofccurs at the period-doubling cascades associated with
instabilities via a period-doubling route to chaos in such gperiod-3 and period-5 windows. Three features for noise to
system was numerically predicted by Sackeal. [1], and induce chaos have also been identified.
later experimentally verified by Simpsat al. [2]. The dy- Since an optically injected semiconductor laser follows
namics of the system has been experimentally mapped ast@e same period-doubling route to chaos as those of the
function of the injection level and the detuning frequencyforced anharmonic oscillator and the logistic map, we are
[3], where two separate chaotic regions were identified. Ongygpired to ask whether noise can make transitions from or-
of the main elements in the dynamics of a semiconductoger tg chaos in such a system. If noise-induced chaos does

laser is the intrinsic noise source in the form of spontaneougc.r. are the mechanisms involved similar to those for the

emission. The effect of this noise source on the locked statq%isy logistic map in our previous studi0]? To better
of an optically injected semiconductor were investigated in, '

: o .~ study the effect of the noise and the noise-induced chaotic
Refs.[4] 6‘_”0'_[5]-_ Rec?”t'y’ it was also qu_antltatlvely StUd'eq feature, a more quantitative and effective approach will be
how the intrinsic noise affects the oscillatory and ChaOt'Cdeveloped
motions of the systerfs] The remainder of this paper is outlined as follows. In Sec.

Noise can actually induce a variety of interesting phenom- X . .
ena in nonlinear dynamical systems, such as noise-inducdly We describe the coupled equations that characterize the

chaos[7—10], noise-induced instabilitiekl 1,12, and noise- ynamics of an optipally injept_ed semicondgctor Iasgr. The
induced ordef13]. Noise-induced chaos was first found in a "ange of the operating conditions under this study is also
forced anharmonic oscillatdi7] and later demonstrated in Presented. In Sec. I, we first consider the test for noise-
the noisy Logistic madS] by Crutchfield and co-workers. induced chaos. The time-dependent eXponent curve method
They suggestefi7,8] that periodic states with a high period- is then reviewed as the basis in developing a method. A more
icity become unobservable under the influence of noise. Inconvenient method is next introduced to study the scale-
stead, they become bandlike, with the number of bands typidependent noise effect in general, and the noise-induced cha-
cally much smaller than their periods. It is these bandlikeotic feature in particular. In Sec. IV, the mechanism for noise
noisy oscillatory states that are called noise-induced chaotim induce chaos is studied. The phase diagrams of attractors
states. Since a period-doubling cascade is a universal featuasd the optical spectra are presented in Sec. V to show how
of nonlinear dynamical systems, one would expect that chaagie quantitative results obtained reflects on these more famil-
associated with this cascade should be readily observed ejar tools. In Sec. VI, we investigate the effect of noise on the

perimentally. To convincingly identify deterministic chaos geometrical structure of the nonlinear dynamics. Finally, we
experimentally, one need to be able to unambiguously disconclude in Sec. VII.

tinguish between noise and chaos. This is, however, a diffi-
cult issue[14—-17. For example, Osborne and co-workers
observed that If noise generates time series with finite
correlation dimensiongl4] and convergind, entropy esti-
mates[15]. This indicates that one need to more carefully A single-mode model of a semiconductor laser under ex-
study whether the dynamics of a noise-induced chaoslikéernal optical injection is consideré¢a]:

Il. COUPLED EQUATION MODEL
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Herea=(|A|/|Ao]— 1), whereA is the field amplitude of the
injected laser, and\, is the steady-state field amplitude of
the laser in the free-running conditiog.is the phase differ-

ence betweerd and A;, whereA; is the amplitude of the
injection field.i=(N/Ng—1), whereN is the carrier density
of the injected laser an, is the steady-state carrier density -1-01 . YR : . 0 as
of the laser in the free-running conditiog,, vs, ,, and ' ' (Q) ’ '
Yp are the cavity decay rate, the spontaneous carrier relax- Dt tequeney ' (GHZ)

ation rate, the differential carrier relaxation rate, and the non-

linear carrier relaxation rate, respectivel$8]. J=(Jled FIG. 1. Numerically obtained bifurcation diagram of the ex-
—¥Ng)/vsNg is the normalized, dimensionless injection trema of the normalized optical field amplitueét) vs the detuning
current parameter, whetkis the injection current densitg, ~ frequency with(a) x=0 and(b) x= 1. The injection parameteiis

is the electronic charge, antis the active layer thickness of 0-04.

the laser. The dimensionless injection parametér . o o

= 7| Al/(ve| Aql) is the normalized strength of the injection The laser considered in this investigation is a SDL model
field received by the injected laser, wheyés the coupling 23501-G1 laser diode which is an index-guided
rate of the injection field to the injected las€r=w,— wq is ~ C@AS/ALGa As quantum-well laser with a 50am cav-
the frequency detuning of the injection field from the free-ity. The current injection level is fixed dt=2/3, which cor-
running frequency of the injected lasdr.is the linewidth ~ responds to an injection current level of 40 mA and a free-
enhancement factoF., andF , are the normalized Langevin running output power of 9 mW. At this current level, the
noise-source parameters that characterize the spontanedi¥responding laser parameters ayg=2.4x10"s™, y,

emission in the laser: =1.458<10°s ™!, y,=1.34x10°s™!, y,=2.41x10°s™?,
andb=4. Meanwhile, the relaxation resonance frequency of
Rsp this laser in the free-running condition is=2.93 GHz. All
(Fa()Fa(t))=(F4(DF 4(t"))= 5 o(t=t) of these parameters were determined experimenfa].
2|Al The experimentally measured spontaneous emissiofil@ke
B at the operating condition considered here Rg,=4.7
= ‘}’: S(t—t"), X 108Vv?m 251
AN At a given current injection level, the characteristics of an
optically injected semiconductor laser depend on the detun-
(Fa(t)F 4(t"))y=(F 4(t)F,(t"))=0, ing frequencyf = /27 and the injection parametérof the

injection field. In the present study, the injection parameter is
where Rg, and 8 are the ratg19] and the fraction of the fixed at £=0.04, and the detuning frequency is tuned be-
spontaneous emission into the laser mode, respectively, adeen 1.5 and 3.5 GHz. Figurdd) depicts the numerically
I' is the confinement factor of the laser waveguide. Since thebtained bifurcation diagram far=0, from which a period-
strength of noise can differ by orders of magnitude in differ-doubling route to chaos is observed. It is found that chaotic
ent semiconductor lasers, to infer how different noise levelstates exist in the range extending from belbw1.68 GHz
affect the laser dynamics, a coefficignts introduced before to abovef=3.03 GHz. However, there exist periodic win-
F. andF,. Henceu=0 corresponds to an idealized, but dows within this chaotic region, such as those around the
unrealistic, clean system in the absence of any noise, whildetuning frequencies at 1.70, 2.24, and 2.83 GHz. As a com-
m=1 corresponds to the experimentally determined nois@arison, Fig. 1) shows the bifurcation diagram far= 1. It
level [19] for the laser under consideration. is observed that the period-doubling cascade is smeared out



5164 S. K. HWANG, J. B. GAO, AND J. M. LIU PRE 61

by noise. Note that even the periodic states with low periodthat different researchers should interpret the obtained results
icity, such as that at the detuning frequentcy 1.5 GHz,  consistently when they apply the test to the same problem.
which is a period-2 oscillation, become unobservable undeThis can be ensured if there is no free parameters to select, or
the influence of noise if one were to estimate the periodicitythere is a simple, strict procedure for choosing the param-
solely on the bifurcation diagram. The question for us is thusters when using the algorithm. The second criterion, which
whether these apparently aperiodic motions are mostly chas as important as the first, is that it will not mislead us to
otic, and the period-doubling cascade is mostly inhibitedinterpret a simple noisy process, such as white noise or a
That is, when noise is present, whether the periodic statdsear Gaussian process, as chaos. These two criteria ensure
still exhibit periodlike motion, similar to that when noise is the notion of determinism in some degree. We will show in
absent, with some diffusion due to noise, or their dynamicathe following subsection that among the three algorithms
characteristics have completely changed to be more likenentioned in the last paragraph, only the method proposed
chaos. by Gao and Zhen{23] satisfies these two criteria. The test
To answer the above question, we choose some of thef Gao and Zheng23] has an additional appealing feature
periodic states at the detuning frequendiesl.67 and 3.04 that it has incorporated the notion of scale into the algorithm.
GHz associated with the main period-doubling cascade, andence it can be used as the basis for the present study with-
f=1.70, 2.24, and 2.83 GHz in the periodic windows, asout any modification. In Sec. lll A we shall first review this
shown in Fig. 1, for the following discussions. In addition, to method. Meanwhile, we shall point out why the other two
explore how the periodic states and their adjacent chaotialgorithms fail to satisfy the above two criteria. We shall
states are related when both are subject to noise, corresporitien develop a simplified version of Gao and Zheng's
ing adjacent chaotic states B+1.68, 1.71, 2.25, 2.84, and method, which will be particularly useful for studying the
3.03 GHz are also investigated. Note that the chaotic statezcale-dependent noise effect with the noise strength fixed.
under present study belongs to one of the two experimentally In order for the analysis presented in this paper to be
mapped chaotic regiorj8], which is different from the one directly relevant to experimental data analysis, we shall work

studied in Ref[6]. with scalar time series in the following discussions. Given a
scalar time serieg(i), i=1,2, ..., it is nowcustomary to
form vectors X;=[x(i),x(i+L), ... x(i+(m—=1)L)] by

Ill. TEST FOR NOISE-INDUCED CHAQS employing the time delay embedding meth¢@4—26,

To determine whether noise can induce chaos or not, w{/nereL is the delay time anh the embedding dimension.

need to define chaos carefully. From the mathematical poi For the analysis of purely chaotic signatsandL have to be

of view, a noisy system, no matter how weak the noise is'chosen properly. A basic idea to determine the minimum

has infinite dimensions. From the experimental point of2cC€Ptable embedding dimension is that in the passage from
view, one would, however, be more interested in a certaiffimensionm to m+1 one can differentiate between points
range of finite scales: if the noise is very weak, then its2n the orbitX(n) that are true neighbors and points which
influence on the dynamics may be limited to very small2re false neighbors, points which appear to be neighbors be-
scales, leaving the dynamics on some finite scales determif@use the orbit is being viewed in too small an embedding
isticlike. In the present discussion, this experimental point ofPace. Based on this basic idea, several methods have been
view is adopted, and chaos is defined by the exponentidi®oP0sed23,27-3Q, which differ in implementations either
divergence between nearby trajectories on certain finitdy Way of graphic display or by defining some appropriate
scales. Carefully note the concept of scale in this definitiorpiatistical quantity. Here, we adopt the method proposed by
of chaos, since the conventional one based on simply calc 220 @nd Zheng23]. Based on the characteristic of the sys-
lating the positive Lyapunov exponent does not take thid€M: We choosento be 7 and. to be 5. Since noisy data are

concept into consideration. Noise-induced chaos is also ddifinite dimensional, mathematically speaking, optimal em-
fined in a similar manner: a certain amount of noise induce%eddlng is not defined for the analysis of noisy data. We
exponential divergence between nearby trajectories on cef@ve found, though, that optimal embedding parameters for a
tain finite scales in a dynamical system. Since exponentigf/€an chaotic signal are usually also good for the analysis of
divergence between nearby trajectories is involved, a test fdf'€ corresponding noisy chaotic signal.
noise-induced chaos has to be able to estimate the largest
positive Lyapunov exponent. A suitable test for noise- A. Time-dependent exponentA (k) curve
induced chaos from the proposed algorithms for estimatin . .
the positive Lyapunov exponents may be found. These alg(?- It_has been dgmonstrate{d?:] that the time series O.f a
rithms can be roughly grouped into three types: the We"_nonlmefir dynamical system can be conveniently studied by
known algorithm of Wolfet al. [20] for estimating the larg- comqulng the following time-dependent exponefi(k)
est positive Lyapunov exponent, a complexity measur&Yves:
proposed by Paladin and co-workdi21,22, which is a 1% =X 4l
weighted version of the largest positive Lyapunov exponent, A(k)= < In(M) >
and a direct dynamical test for deterministic chaos proposed X=Xl
by Gao and Zhend23]. Before we continue, we need to
carefully examine which algorithm can serve as a basis fowith r<|X;—X;[|<r+Ar, wherer and Ar are prescribed
the study of noise-induced chaos. small distances. Geometricallyr,(+Ar) defines a shell,

To serve as a test for noise-induced chaos, a set of minand a shell captures the notion of scale. The angle brackets
mal criteria has to be satisfied. The first criterion requiresdenote ensemble averages of all possible pairsxofX;).

4
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4 , - shells separate from one another. This simply suggests that
@) the noisy chaotic motions corresponding to those parameters
are more stochastic than deterministic. We have also ob-
37 ] served that many noisy oscillatory motions behave similarly
as the noisy chaotic motion &t=2.84 GHz.

We can now discuss why in the presence of noise the
algorithms of Wolfet al. [20] and Paladin and co-workers
[21,22 cannot be used as a test for chaos. Their methods are
somewhat equivalent to estimating the Lyapunov exponent
(or a complexity measuydy A (k)/k, whereA (k) is defined
as in Eqg.(4) but with a modification: it is computed for
IXi = X;l|<r and||X;.—X; <R, wherer andR are pre-
scribed distance scales. The conditjo)— X;[|<r amounts
to grouping some of our small shells together to form a small
() ball. The condition||X; . — X | <R is presumably to set
the time scalek smaller than the prediction time scatg.

For clean chaotic signals, if the embedding parameters are
properly chosen, and the linearly increasing parts of the
A (k) curves form a tight envelope, then an estimation of the
exponent will not depend on the specific choicer énd R.
However, one is usually not so lucky as to choose those
specific optimal embedding parameters. Hence different re-
searchers may obtain different estimates of the exponent by
choosing different sets of values foandR. For example, an

, . inexperienced researcher might unfortunatelykssb much

0 100 200 300 larger thark, that a value of almost zero is obtained for the
exponent.

The problem associated with estimating an exponent from

FIG. 2. Time-dependent exponef(k) curves as a function of a set of stochastic data by using the algorithms of VigoHl.
the evolution timek for f=2.84 GHz with(a) xu=0 and (b) u [20] and Paladin and co-workef21,22 is apparently much
=1. In both plots, six curves, from bottom to top, correspond tomore serious than that associated with estimating an expo-
shells (2 (*1)/2,2712) with i=6, 7, 8, 9, 10, and 11. nent from a clean chaotic signal. Since now thg) curves

do not form an envelope, different researchers typically will
The integerk corresponds to the evolution tinkest, and is  obtain different values for the exponent by choosing differ-
called the evolution time for simplicity. ent sets of values far andR (and embedding parametgrs

For clean chaotic systems, &(k) curve typically in-  One may instinctly choosks>(m—1)L such that the esti-
creases linearly witlk until somekp, then flattens, Wherbp mated exponent may quite often be very close to zero. For a
is the predictable time scale for chaos. The linearly increasstochastic data set, since thé¢k) curves always increase for
ing parts of theA (k) curves corresponding to different shells k< (m—1)L due to the correlations introduced by the em-
overlap together to form an envelope. The slope of this enbedding procedurf23], a positive finite value of the expo-
velope estimates the largest positive Lyapunov exponenhent can always be obtained for a stochastic data, thus result-
This property provides a direct dynamical test for determin-ing in a false interpretation of the stochastic data being
istic chaog[23]. Figure 2a) shows an example of th&(k)  chaotic. Indeed, Dammig and Mitschk&7] found that a
curves for the chaotic state dt=2.84 GHz, with u=0, finite positive value for the largest positive Lyapunov expo-
where six curves, from bottom to top, correspond to shellsient is obtained from some stochastic data by the algorithm
(27 (D272 with i =86, 7, 8, 9, 10, and 11. As for clean of Wolf et al. [20]. The method of Gao and Zher{@3]
periodic systemsA (k) is simply zero for allk and for all  avoids all these problems because all the important informa-
shells, indicating that the largest exponent is zero. This ision, such as whether the envelope exists or not, is automati-
consistent with a theoretical result of Hakefi3i]. cally shown by theA (k) curves.

For noisy systems, th& (k) curves corresponding to dif- The authors of Ref[8] suggested that the effect of noise
ferent shells increase withand then level off. However, the is to average the structure of deterministic attractors over
linearly increasing parts of thd (k) curves may separate some range of nearby parameters, implying that the behavior
from one another. The stronger the noise is, the more thef adjacent noisy attractors are similar. Therefore, for noise
separation is. An example for the chaotic state fat to be able to induce a transition from a periodic state to a
=2.84GHz withu=1 is shown in Fig. ). Note that the chaotic state, the corresponding adjacent chaotic states
linearly increasing parts of th& (k) curves for some shells should still behave chaotically in the presence of such noise.
still overlap together, which, according to the definition of In other words, the adjacent chaotic states should be very
chaos, implies that this chaotic state still behaves chaoticallinsensitive to noise. This suggests that we first study the
at these scales under the influence of noise. For many oth@nmunity of chaotic states to noise. Before we proceed, we
chaotic states, such as thatfat1.68 GHz, however, we find need to point out that a specific noise source may affect
that the linearly increasing parts of tlig(k) curves for all  different chaotic states differently: it may have an effect on

Time dependent exponent A(k) curves

Evolution time K
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the motion of a certain chaotic state only at very small 0.10 ' ™ ;
scales, but may affect the motion of other chaotic states at f=1.68 GHz
large scales. We call this feature the scale-dependent noise 0.08 o =1
effect. The idea of using a quantity called the normalized = =0
area[32] to quantify the effect of noise is not very conve- 0.06

nient for studying the scale-dependent noise effect, because
the normalized area is calculated based on a specific scale
defined by two shells which are somewhat arbitrarily chosen.
Therefore, we need to develop a method to quantify scale-
dependent noise effect for the comparison of different cha-

0.04

0.02 W

otic states.
0.00
B. Scale-dependent Lyapunov exponent 0.10
. . . f=2.84GH
Recall that for clean chaotic systems, the linearly increas- 0.08 . et :
ing parts of theA (k) curves corresponding to different shells ' . p=0

overlap together to form a linear envelope, and the slope of

this envelope estimates the largest positive Lyapunov expo- 0.06
nent for the dynamical system. Hence the slope of the lin-
early increasing part of tha (k) curve for each shell should 0.04 \—W

be independent of scal¢shellg if the envelope is very well

defined. We call the slope of the linearly increasing part of 0.02
the A (k) curve for each shell the largest positive Lyapunov
exponent at that scale, and denote itA\gs) for the shell
(r,r+Ar), or shellr for simplicity. It is this characteristic
that guarantees different researchers to obtain comparable
estimates of the largest positive Lyapunov exponent for a
dynamical system though each may estimate this value at a FIG. 3. Slope of the linearly increasing parts of thék) curve,
different scale. For noisy chaotic systems, the envelope nd(r), vs the logarithm of the radius of each shell, jpg for f
longer exists, and\(r) generally depends on Therefore, =1.68 and 2.84 GHz for the cases @0 and 1 in both plots.

the largest positive Lyapunov exponent for noisy chaotic

systems is not defined. The extent of the dependena¢rof ~ present, the motions of the chaotic stated at2.25, 2.84,

on r will, however, tell us how noise affects different scalesand 3.03 GHz may still be chaotic on some finite scales,
for different systems. The less dependentrathe \(r) is,  while those atf =1.68 and 1.71 GHz simply become noise-
the more immune the system is to noise. like.

Figure 3 shows the value af(r) for the chaotic states at Since the corresponding adjacent chaotic states should be
f=1.68 and 2.84 GHz as a function of lodgor both =0  insensitive to noise for periodic states to be susceptible to
and u=1. It is observed thak (r) has a larger value when noise-induced chaos, it is expected from Fig. 4 that noise-
noise is present than when noise is absent, indicating thaaduced chaos is very likely to happen around the periodic
noise increases the degree of exponential divergence bstates aff =2.24, 2.83, and 3.04 GHz, while it is very un-
tween nearby orbits of the chaotic state. It is also observetikely to occur around those &t=1.67 and 1.70 GHz. To
that the amount of change in the value)dfr) caused by determine whether noise indeed induces chaos at those ex-
noise at f=2.84GHz is much smaller than that 4t pected periodic states, we can simply apply the method just
=1.68 GHz. This indicates that the effect of noise on the

Largest positive Lyapunov exponent  A(T)

0.00 : : *
-22 -1.8 -14 -1.0 -06

log,,r

dynamics af =2.84 GHz is much less significant than that at 3.5 '

f=1.68 GHz. o 1.68 GHz
To be more quantitative, we first denotér) of the cha- 3.0t : ;;; g:z

otic state in the presence of noise=£1) as\,(r) and that <  2.84 GHz

in the absence of noiseu=0) asi.(r), and then take their 2 55 * 3.03 GHz

ratio. If the chaotic state is insensitive to noise, then the ratio A

Nn(r)/N¢(r) should be around 1. Figure 4 shows the ratio Té

Mn(r)/N(r) versus logr for f=1.68, 1.71, 2.25, 2.84, and S 2o

3.03 GHz. They correspond to the chaotic states adjacent to "

the periodic states at=1.67, 1.70, 2.24, 2.83, and 3.04 T 15

GHz, respectively. Note that the values of the ratio

Nn(r)/Ng(r) for f=1.68 and 1.71 GHz decrease with in- . . .

1.0
creasing values of lqgr significantly, whereas those fdr -22 -18 -14 -10 -06

=2.25, 2.84, and 3.03 GHz only depend weakly on,dog log,,T
This indicates that the chaotic statesfat2.25, 2.84, and
3.03 GHz are substantially less sensitive to noise than those FIG. 4. Ratio of\,/\. vs logor for f=1.68, 1.71, 2.25, 2.84,
at f=1.68 and 1.71 GHz. In other words, when noise isand 3.03 GHz.
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FIG. 5. Ratio of\,/\ vs log,er for f=1.67, 1.70, 2.24, 2.83, 0 500 1000 1500 2000
and 3.04 GHz. Evolution time k
developed to study the dependence\¢f) onr for the pe- FIG. 6. Four logarithmic displacemetihllxi+k—X£+k||> curves,

i —(bt1)/2 5—il2 P
riodic states when subject to noise. To study the changes i?f'g tfg ti)lbott?jml,zc?rr(e?pfoiuilrég g)HShe”Sd ((2: 0) 0’571,2) (\g)'t?
M (r) caused by the presence of noise for a periodic state, it i's;1 20GHz Zr;\d MZOO%OS;LTZ ' © ijg 54_&;'2 and u
instructive to compare its noisy motion with the clean motion_ 4’500 909 32 (d) f=2.83GHz andu=0.00022 and (¢) f
of its adjacent chaotic state beqaL_lse adjacent d_ynamlcgl?).(m(3HZ andu=0.000%2 Curves generated from ki with
Stgtes are suggest@ﬁﬂlto behave similarly When SL.’bJeCt to a=0.4, 0.35, 0.85, 1.1, and 0.9 are also depictedanas blank
noise. Therefore, we first calculat¢r) for the periodic state  gquares (b) diamonds,(c) triangles, (d) circles, and(e) squares,
in the presence of noise, denote itX&g(r), and calculate respectively. To aid the visibility, groups of curvés, (b), (c) and
A(r) for its adjacent chaotic state in the absence of noisey) are shifted upward by 10.5, 7.5, 6.0, and 3 units, respectively.
denote it asA.(r). We then take their ratio. The ratio ] ) o ]
Np(r)/\o(r) is expected to be around 1 if noise-induced Peen shown in the noisy logistic mép0] that, for noise of a
chaos happens. Figure 5 shows the ratigr)/\.(r) as a certain strength to induce chao; fror_n a periodic state, the
function of log,r for the periodic states at=1.67, 1.70, Iong-tgrm grpw_th rate of the Iogarl'thmlc dlspllacement curves
2.83, 2.24, and 3.04 GHz. It can be concluded from Fig. gor this periodic state when subject to noise of a weaker
that noise-induced chaos does occurfat2.24, 2.83. and strength is stronger than the standard Brownian motion, char-

3.04 GHz, but it does not occur &t1.67 and 1.70 GHz. acterized by an exponeat>0.5. .
Moreover, if we compare Fig. 5 with Fig. 4 carefully, we  With the above results in mind, we study the behavior of
find that the periodic state and its adjacent chaotic state d&'€ logarithmic displacement curves for the periodic states
behave similarly when both are subject to noise, as suggest&4biect to noise of a weak strengia{ 1). These are shown

in Ref. [8]. in Fig. 6 for (a) f=1.67GHz with x=0.00%? (b) f
=1.70GHz with ©=0.003"2, (c) f=2.24GHz with u
IV. MECHANISM FOR NOISE-INDUCED CHAOS =0.0000098% (d) f=2.83GHz with »=0.0007" and

(e) f=3.04 GHz with »=0.000#2 To aid the visibility,

To find the mechanism for noise-induced chaos, we neethese groups of curves are shifted upward by different
to work with the so-called logarithmic displacement curves,amounts. To show the growth rate of the logarithmic dis-
and examine the long-term growth rate of these curves wheplacement curves, curves generated frork*lwith a=0.4,
subject to weak noise. The logarithmic displacement curve§.35, 0.85, 1.1, and 0.9 for=1.67, 1.70, 2.24, 2.83, and

are defined by rewriting Eq4) as[32] 3.04 GHz, respectively, are also depicted. Diffusional pro-
cesses that are slower than the standard Brownian motion are
(IN[[X; = X4y = (Inf[X = X[} + A (k), (5)  observed af =1.67 and 1.70 GHz, where a transition from

periodic states to chaos does not occur. The growth rates of
and plot(In[[X; . ,—X;+[) as a function of the evolution time the logarithmic displacement curves fb=2.24, 2.83, and
k. 3.04 GHz are larger than 0.5, indicating diffusional processes

It has been demonstrat¢82] that for noisy oscillatory stronger than the standard Brownian motion.

systems, such as the noisy Van der Pol’s oscillator, the phase Note that when noise-induced chaos occurs, the noisy sys-
points in the embedding space execute Brownian-like motiomem with certain amount of noise exhibits an exponential
near a deterministic limit cycle, i.e., for large (In[X;x  growth in the displacement curves for a short period of time,
—X;+l)~Ink?, with a=0.5. It hasalso been shown that the then levels off. Such behavior is easier to observe if the
long-term growth rate of the logarithmic displacement curvesoisy system with a weaker noise already executes a diffu-
slows down near a bifurcation point in an optically injectedsional process stronger than the Brownian motion. This is the
semiconductor lasdi6], which is characterized by an expo- reason why noise is able to induce chaod at2.24, 2.83,
nenta<0.5. This implies a diffusional process slower thanand 3.04 GHz, but is not capable of doing sd at1.67 and
the standard Brownian motion. More interestingly, it has1.70 GHz, for the diffusional processes of the latter are
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FIG. 7. Optical spectra fof =1.67, 2.83, and 2.84 GHz for the b0t I
cases ofu=0 and 1. (1+a)coso

slower than the standard Brownian motion. Note that this FIG. 8. Projections of three-dimensional attractors on two di-
very condition is also involved in the periodic states suscepmensions forf=1.67, 2.83, and 2.84 GHz for the cases.o*0
tible to noise-induced chaos in the noisy logistic njap]. ~ and 1.
We surmise that this is a generic mechanism for noise to
induce chaos, and thus has predictive value. spectrum shows some broadening around each principal fre-
quency, many of the principal frequencies still remain as
peaks. This suggests that the system still oscillates periodi-
cally but the periodic motion is obscured by noise to a cer-
Let us now look at the dynamics of our clean and noisytain degree. In contrast, for the periodic state fat
systems with the more familiar tools: phase diagrams and=2.83 GHz, the spectrum is dominated by broad pedestals,
optical spectra. To be simple, only a few of the dynamicaland only a few of the principal frequencies remain as peaks,
states will be discussed. However, the results presented appiydicating the loss of the periodic characteristic. This obser-
to other corresponding cases. vation is consistent with our earlier conclusion that noise
Figure 7 shows the optical spectra of the system in differinduces chaos dt=2.83 GHz but not af=1.67 GHz. Note,
ent operating conditions. The optical spectrum is an imporhowever, that the difference between these two noisy states
tant and common tool in laser physics and engineering beis difficult to distinguish by solely observing the correspond-
cause it exhibits all frequency components of an optical fielding attractors in Fig. 8.
which thus reflects certain aspects of the dynamics of the For the chaotic state &t=2.84 GHz, we find that the
system. It is found that when noise is absent, the opticaspectrum preserves most of features with and without noise.
spectra atf=1.67 and 2.83 GHz consist of discrete, rela- This suggests that the chaotic statef at2.84 GHz still be-
tively narrow peaks that are regularly spaced, which are théaves chaotically when noise is present. The same result may
signature of periodic oscillation for this systef,3]. In  also be observed from Fig. 8, where the chaotic attractor
comparison, the spectrum & 2.84 GHz is dominated by a subject to noise is only blurred in small scales but is pre-
broad pedestal with some strong secondary peaks, revealirsgrved in large scales. On the other hand, we find that under
the chaotic characteristic of the systg2y3]. These observa- the influence of noise, the spectrum and attractor for the
tions also reflect on the structure of corresponding attractorshaotic state af=1.68 GHz become completely different,
shown in Fig. 8. indicating a noiselike characteristic of the dynamics. These
Also shown in Fig. 7 is the spectrum of the system subjecbbservations are consistent with the quantitative result ob-
to noise. For the periodic state at 1.67 GHz, although the tained earlier and shown in Fig. 4, that the effect of noise on

V. PHASE DIAGRAM AND OPTICAL SPECTRUM



PRE 61 NOISE-INDUCED CHAOS IN AN OPTICALLY ... 5169

the chaotic dynamics dt=1.68 GHz is substantially stron- 8 "o [o168GHZ <0
ger than that af =2.84 GHz. It is also found that when noise . fo 168 GHz. ﬁ;
is present, the spectra fdér=2.83 and 2.84 GHz are very o f=1.67GHZ: =1
similar to each other. This is in agreement with the earlier 6|

observation that a periodic state and its adjacent chaotic state
behave similarly. This is also reflected in the similarity of the
noisy attractors between=2.83 and 2.84 GHz, as shown in 47
Fig. 8. These observations in geometrical structure of attrac-
tors, shown in Fig. 8, suggest that we calculate the correla-
tion dimensiond 33,34 of the chaotic states and the noise-
induced chaotic states.

2 ¢ W

VI. CORRELATION DIMENSION OF NOISE-INDUCED
CHAOTIC STATES

m {=284GHz, =0
e f=284GHz, pn=1
o f=283GHz, p=1

The correlation integraC(N,r) of a dynamical state is
defined ag§33]

Local slope of log C(N,r)
o

1 N
CND=1, 2, or=IXi=X|]), (6)

where 6 is the Heaviside step functioix; and X; are the

vectors constructed from the time seribkis the number of

points in the time series, amds a prescribed small distance. 2
The correlation dimension of the dynamical state is then

given by

0 - ‘ . ,
logi1oC(N,r) -25 -20 -15 -1 -05 0
v=Ilim lim ————. 7)
r—0N—o IOglOr Iogmr

| FIG. 9. Local slope of the correlation integral lg&€(N,r) vs
00;or for f=1.68 and 2.84 GHz for the cases@f0 and 1. Also
shown aref=1.67 and 2.83 GHz fop=1.

Here we measure the local slope of the correlation integra]
log;oC(N,r) instead for different values of the small dis-
tancer by calculating

10910 C(N,ri-1) —10g;0C(N,rj 1) f=1.67 and 2.83 GHz, witu=1. We observe that in the
= 00207 1= 10020111 : (8)  presence of noise, the curves of the local slopefferl.67
and 2.83 GHz behave approximately the same way as those
Figure 9 shows the values of the local slope of the correfor their corresponding adjacent chaotic statet-al.68 and
lation integral logoC(N,r) as a function of logyr for f 2.84 GHz. This tells us that when subject to noise, a periodic
=1.68 and 2.84 GHz, respectively. For1.68 GHz, we State and its adjacent _ch_ao_tic state have si_milar geometrical
find that the curves of the local slope far=0 andu=1 are structures. Moreover, it indicates that a noise-induced cha-

separated at all scales, indicating that noise completely déztip state does_ share a similar geometrical_ structure as its
stroys the original structure of the clean attractor. In contrasdjacent chaotic state in the presence of noise.
it is found that forf =2.84 GHz, the local slopes of the cor-
relation integral withu=0 and 1 overlap at some large
scales but separate at small scales. This indicates that some
fine structures of the attractor are destroyed by noise, but the The effect of the intrinsic spontaneous-emission noise on
entire noisy attractor is left chaoslike with the general charthe nonlinear dynamics of an optically injected semiconduc-
acteristics of the clean chaotic attractor. Note that noisetor laser is investigated to find whether noise with an experi-
induced chaos occurs §&2.84 GHz, not af =1.68 GHz.  mentally determined level can induce chaos in such a sys-
These results indicate that, in the presence of noise, a chaotiem. To study the observed noise effects, we develop a
state adjacent to a periodic state where noise-induced chaasethod by studying the dependence of the largest positive
happens preserves approximately the same geometrical strugyapunov exponent on scales for noisy systems. This
ture, whereas that adjacent to a periodic state where noiseiethod is shown to provide a quantitative and effective ap-
induced chaos is not observed exhibits a completely differenproach to the study of the scale-dependent noise effect and
geometrical structure. This alternatively tells us that noiseéhe characteristics of noise-induced chaos. By employing this
does have much less effect on the dynamics of a chaotic stateethod, we find that a chaotic state adjacent to a periodic
adjacent to a periodic state where noise-induced chaos haptate where noise-induced chaos is expected to happen is
pens. insensitive to noise, leaving the chaotic state still chaoslike
Also shown in Fig. 9 are the values of the local slope ofin the presence of noise. Most importantly, we find that
the correlation integral log C(N,r) for the periodic states at noise-induced chaos does occur at the periodic states as ex-

v(ry)

VIlI. CONCLUSION
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pected. Because the laser model used here was sf&in To study the effect of noise on the geometrical structure
to successfully recover all the oscillatory and chaotic statesf the dynamical states, the correlation dimensions of the
of the system observed experimentally, this result impliesattractors are calculated. It is found from this study that,
that noise with an experimentally determined strength doeg/hen subject to noise, a chaotic state adjacent to a periodic
induce chaos in the system under certain operating condktate where noise-induced chaos happens preserves most of
tions, suggesting that noise-induced chaos indeed exists g original geometrical structure in large scales, whereas the
real systems. The key reason for noise to induce chaos is thgbometrical structure of a chaotic state adjacent to a periodic
the periodic state should execute a diffusional process strorstate where noise-induced chaos is not observed is com-
ger than the standard Brownian motion when subject to noisg|ete|y changed in the presence of noise. Moreover, we also
of a weak strength. It is this condition that allows noise,fing that a noise-induced chaotic state shares a similar geo-

when its strength is increased, to easily induce exponentighetrical structure with its adjacent chaotic state in the pres-
divergence between nearby orbits, which is a characteristignce of noise.

of deterministic chaos. Note that this characteristic of the
periodic state together with the characteristic that its adjacent
chaotic state is insensitive to noise are also involved in the
noisy logistic map[10] for noise-induced chaos to happen.
This implies that these two characteristics are generic fea- This work was supported by the U.S. Army Research Of-
tures for noise to induce chaos. fice under Contract No. DAAG55-98-1-0269.
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